Python (programming language)

From Wikipedia, the free encyclopedia

Python
Paradigm: Multi-paradigm
Appeared in: 1991
Designed by: Guido van Rossum
Developer: Python Software Foundation
Latest release: 2.5 / September 19, 2006
Typing discipline: Strong, dynamic ("duck typing")
Major implementations: CPython, Jython, IronPython, PyPy
Dialects: Stackless Python
Influenced by: ABC

C
Haskell
Icon
Lisp
Modula-3
Perl

Java
Influenced: Ruby, Boo
OS: Cross-platform
License: Python Software Foundation License
Website: http://www.python.org/

Python is a high-level programming language first released by Guido van Rossum in 1991.[1] Python is designed around a philosophy which emphasises the importance of programmer effort over computer effort, and it rejects more arcane language features, prioritising readability over speed or expressiveness.[2] Python is often characterised as minimalist, although this only applies to the core language's syntax and semantics; the standard library provides the language with a large number of additional libraries and extensions.

Python is a multi-paradigm programming language which has a fully dynamic type system and uses automatic memory management; it is thus similar to Perl, Ruby, Scheme, Smalltalk, and Tcl. Miscellaneous parts of the language have formal specifications and standards, but not the language as a whole.

The de facto standard for the language is the CPython implementation. CPython is managed by the non-profit Python Software Foundation under an open source development model; released under the Python License, CPython is free software.

Contents

[edit] History

Python logo, 1990s-2005
Python logo, 1990s-2005

Python was conceived in the late 1980s[3] by Guido van Rossum at CWI in the Netherlands as a successor of the ABC programming language capable of exception handling and interfacing with the Amoeba operating system.[4] Van Rossum is Python's principal author, and his continuing central role in deciding the direction of Python is acknowledged by referring to him as its Benevolent Dictator for Life (BDFL).

In 1991, van Rossum published the code (labelled version 0.9.0) to alt.sources.[1] Already present at this stage in development were classes with inheritance, exception handling, functions, and the core datatypes of list, dict, str and so on. Also in this initial release was a module system borrowed from Modula-3; van Rossum describes the module as "one of Python's major programming units".[3] Python's exception model also resembles Modula-3's, with the addition of an else clause.[4] In 1994, comp.lang.python, the primary discussion forum for Python, was formed, marking a milestone in the growth of Python's userbase.

Python reached version 1.0 in January 1994. A major set of features included in this release were the functional programming tools lambda, map, filter and reduce. Van Rossum states that "Python acquired lambda, reduce(), filter() and map(), courtesy of (I believe) a Lisp hacker who missed them and submitted working patches."[5] The actual contributor was Amrit Prem; no specific mention of any Lisp heritage is mentioned in the release notes at the time.

The last version released from CWI was Python 1.2. In 1995, van Rossum continued his work on Python at the Corporation for National Research Initiatives (CNRI) in Reston, Virginia where he released several versions of the software.

During van Rossum's stay at CNRI, he launched the Computer Programming for Everybody (CP4E) initiative, intending to make programming more accessible to more people, with a basic 'literacy' in programming languages, similar to the basic English literacy and mathematics skills required by most employers. Python served a central role in this: because of its focus on clean syntax, it was already suitable, and CP4E's goals bore similarities to its predecessor, ABC. The project was funded by DARPA.[6] As of 2007, the CP4E project is inactive, and while Python attempts to be easily learnable and not too arcane in its syntax and semantics, reaching out to non-programmers is not an active concern.[7]

In 2000, the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs team. CNRI requested that a version 1.6 be released, summarising Python's development up to the point where the development team left CNRI; its and 2.0's release schedule had a significant amount of overlap.[8] Python 2.0 was the first and only release from BeOpen.com. After Python 2.0 was released by BeOpen.com, Guido van Rossum and the other PythonLabs developers joined Digital Creations.

Python 2.0 borrowed a major feature from the functional programming language Haskell: list comprehensions. Python's syntax for this construct is very similar to Haskell's, modulo Haskell's preference for punctuation characters, and Python's preference for alphabetic keywords. Python 2.0 also introduced a garbage collection system capable of collecting reference cycles.[8]

Following this double release, and after van Rossum left CNRI to work with commercial software developers, it became clear that the ability to use Python with software available under the GPL was very desirable. The license used at that time, the Python License, included a clause stating that the license was governed by the State of Virginia, which made it, in the view of the Free Software Foundation's (FSF) lawyers, incompatible with the GNU GPL. CNRI and the FSF interacted to develop enabling wording changes to Python's free software license that would make it GPL-compatible. That year (2001), van Rossum was awarded the FSF Award for the Advancement of Free Software.

Python 1.6.1 is essentially the same as Python 1.6, with a few minor bug fixes, and with the new GPL-compatible license.[9]

Syntax-highlighted Python code.
Syntax-highlighted Python code.

Python 2.1 was a derivative work of Python 1.6.1, as well as of Python 2.0. Its license was renamed Python Software Foundation License. All code, documentation and specifications added, from the time of Python 2.1's alpha release on, is owned by the Python Software Foundation (PSF), a non-profit organisation formed in 2001, modelled after the Apache Software Foundation.[9] Included in this release (though off by default and not mandatory until several versions later) was an implementation of scoping more similar to static scoping (of which Scheme is the originator) rules.[10]

A major innovation in Python 2.2 was the unification of Python's types (types written in C), and classes (types written in Python) into one hierarchy. This single unification made Python's object model purely and consistently object oriented.[11] Also added were generators which were inspired by Icon.[12]

Python's standard library additions and syntactical choices were strongly influenced by Java in some cases: the logging package,[13] introduced in version 2.3,[14] the SAX parser, introduced in 2.0, and the decorator pattern syntax that uses @,[15] added in version 2.4[16]

As of 2007, the latest production version is 2.5.

[edit] Future development

Main article: Python 3

A Python Enhancement Proposal (or "PEP") is a standardised design document providing general information related to Python, including proposals, descriptions, and explanations for language features. PEPs are intended as the primary channel for proposing new features, and for documenting the underlying design rationale for all major elements of Python.[17] Outstanding PEPs are reviewed and commentated by the BDFL.[18]

Python developers have an ongoing discussion of a future version called Python 3.0 (the project is called "Python 3000" or "Py3K") that will break backwards compatibility with the 2.x series in order to repair perceived flaws in the language. The guiding principle is to "reduce feature duplication by removing old ways of doing things". There is no definite schedule for Python 3.0, but a PEP (Python Enhancement Proposal) that details planned changes exists.[19]

[edit] Usage

Main article: Python software

Some of the largest projects that use Python are the Zope application server, the Mnet distributed file store, and the original BitTorrent client. It is also extensively used by Google[20] and NASA.[21]

Python is a required component of some operating systems; Gentoo uses it extensively in its package management system, Portage, and the standard tool to access it, emerge.

Python is also an integral component of the popular LAMP solution stack (Linux, Apache, MySQL, Python/Perl/PHP) for web development.

[edit] Syntax and semantics

Python was designed to be a highly readable language. It aims toward an uncluttered visual layout, uses English keywords frequently where other languages use punctuation. Python requires less boilerplate than traditional statically-typed structured languages such as C or Pascal, and has a smaller number of syntactic exceptions and special cases than either of these.[22] Python uses indentation/whitespace, rather than curly braces, to delimit statement blocks. An increase in indentation comes after certain statements; a decrease in indentation signifies the end of the current block. Python's statements include:

  • The if statement, which conditionally executes a block of code, along with else and elif (a contraction of else-if).
  • The while statement, which runs a block of code until a condition is False.
  • The for statement, which iterates over an iterable, capturing each element to a local variable for use by the attached block.
  • The class statement, which executes a block of code and attaches its local namespace to a class, for use in object oriented programming.
  • The def statement, which defines a function.

Each statement has its own semantics: for example, the def statement does not execute its block immediately, unlike most other statements.

CPython does not support continuations, and according to Guido van Rossum, never will.[23] However, better support for coroutine-like functionality is provided in 2.5, by extending Python's generators.[24] Prior to 2.5, generators were lazy iterators — information was passed monodirectionally out of the generator.

Python uses duck typing, also known as latent typing. Type constraints are not checked at compile time; rather, operations on an object may fail, signifying that the given object is not of a suitable type. Despite not enforcing static typing, Python is strongly typed, forbidding operations which make little sense (for example, adding a number to a string) rather than silently attempting to make sense of them.

In addition to those four numeric data types, Python includes a number of built-in types used for a variety of purposes. The most commonly-used types are as follows:

Type Kind Notes Syntax Example
str String Immutable 'Wikipedia'
list Sequence Mutable, can contain mixed types [4.0, 'string', True]
set Set Unordered, contains no duplicates set([4.0, 'string', True])
dict Mapping Group of key and value pairs {'key1': 1.0, 'key2': False}
int Integer A fixed precision number (may be transparently expanded to long, which is arbitrary precision) 42
float Number Floating point 3.1415927
bool Boolean The empty list, dict, set, and 0, are also considered False True or False

Python also allows programmers to define their own types. This is in the form of classes, most often used for an object-oriented style of programming. New instances of classes are constructed by calling the class (ie, like FooClass()), and the classes themselves are instances of class type (itself an instance of itself), allowing metaprogramming and reflection.

Methods on objects are functions attached to the object's class; the syntax instance.method(argument) is, for normal methods and functions, syntactic sugar for Class.method(instance, argument). This is why Python methods must have an explicit self parameter to access instance data, in contrast to the implicit self in some other object-oriented programming languages (for example, Java or Ruby).[25]

[edit] Implementations

The mainstream Python implementation, also known as CPython, is written in C compliant to the C89 standard,[26] and is distributed with a large standard library written in a mixture of C and Python. CPython ships for a large number of supported platforms, including Microsoft Windows and most modern Unix-like systems.

Python was originally developed as a scripting language for the Amoeba distributed operating system which was capable of making system calls; however, that version is no longer maintained. CPython was intended from almost its very conception to be cross-platform; its use and development on esoteric platforms such as Amoeba alongside more conventional ones like Unix or Macintosh has greatly helped in this regard.[27]

Stackless Python is a significant fork of CPython that implements microthreads. It can be expected to run on approximately the same platforms that CPython runs on.

There are two other major implementations: Jython for the Java platform, and IronPython for the .NET platform. PyPy is an experimental self-hosting implementation of Python, in Python, that can output a variety of types of bytecode, object code and intermediate languages.

Several programs exist to package Python programs into standalone executables, including py2exe, PyInstaller and py2app.

Many Python programs can run on different Python implementations, on such disparate operating systems and execution environments, without change. In the case of the implementations running on top of the Java virtual machine or the Common Language Runtime, the platform-independence of these systems is harnessed by their respective Python implementation.

Many third-party libraries for Python (and even some first-party ones) are only available on Windows, Linux, BSD, and Mac OS X.

[edit] Interpretational semantics

CPython's interactive mode, used via IDLE
CPython's interactive mode, used via IDLE

Most Python implementations (including CPython, the dominant implementation) can function as a command-line interpreter, where the user enters statements sequentially and receives the results immediately; in short, acting as a shell. While the semantics of the other modes of execution (bytecode compilation, or compilation to native code) preserve the sequential semantics, they offer a speed boost at the cost of interactivity, so they are only used outside of a command-line interaction (for example, importing a module).

Other shells add capabilities beyond those in the basic interpreter, including IDLE and IPython. While generally following the visual style of the Python shell, they implement features like auto-completion, retention of session state, and syntax highlighting.

Some implementations are able to compile to not only bytecode, but to turn Python code into machine code. So far, this has only been done for restricted subsets of Python. PyPy takes this approach, naming its restricted compilable version of Python RPython.[28] There is also Psyco, which is a specialising just in time compiler, which transforms bytecode to machine code at runtime. The produced code is specialised for certain data types (for example, there may be a version for integers smaller than 232 which uses the CPU's operations directly, and there may be a version which goes through the normal machinery for Python objects). This is done at runtime, based on the values the program actually manipulates, and works on any Python code, not just a subset.[29]

[edit] Standard library

Python has a large standard library, commonly cited as one of Python's greatest strengths, [30] providing tools suited to many disparate tasks. This comes from a so-called "batteries included" philosophy for Python modules. The modules of the standard library can be augmented with custom modules written in either C or Python. Recently, Boost C++ Libraries includes a library, python, to enable interoperability between C++ and Python. Because of the wide variety of tools provided by the standard library combined with the ability to use a lower-level language such as C and C++, which is already capable of interfacing between other libraries, Python can be a powerful glue language between languages and tools.

The standard library is particularly well tailored to writing Internet-facing applications, with a large number of standard formats and protocols (such as MIME and HTTP) supported. Modules for creating graphical user interfaces, connecting to relational databases, arithmetic with arbitrarily precise decimals, and manipulating regular expressions are also included.[31] Python also includes a unit testing framework for creating exhaustive test suites.

Some parts of the standard library are covered by specifications (for example, the WSGI implementation wsgiref follows PEP 333), but the majority of modules are defined by nothing other than their code, documentation and test suite. However, because most of the standard library is cross-platform Python code, there are only a small number of modules which must be altered or completely rewritten by alternative implementations.

[edit] Programming philosophy

Python is a multi-paradigm programming language. This means that, rather than forcing programmers to adopt a particular style of programming, it permits several styles: object orientation and structured programming are fully supported, and there are a number of language features which support functional programming and aspect-oriented programming. Many other paradigms are supported using extensions, such as pyDBC and Contracts for Python which allow Design by Contract. Python uses dynamic typing and reference counting for memory management. An important feature of Python is dynamic name resolution, which binds method and variable names during program execution.

Another target of the language's design is ease of extensibility, rather than having everything built into the language core. New built-in modules are easily written in C or C++. Python can also be used as an extension language for existing modules and applications that need a programmable interface. This design, of a small core language with a large standard library and an easily-extensible interpreter, was intended by van Rossum from the very start, due to his frustrations with ABC, which espoused the opposite mindset.[3]

Though the design of Python is somewhat hostile to functional programming and the Lisp tradition (no tail-call elimination nor good support for anonymous closures), there are significant parallels between the philosophy of Python and that of minimalist Lisp-family languages such as Scheme.

While offering choice in coding methodology, the Python philosophy rejects exuberant syntax, such as in Perl, in favor of a sparser, less cluttered one. As with Perl, Python's developers expressly promote a particular "culture" or ideology based on what they want the language to be, favoring language forms they see as "beautiful", "explicit" and "simple". As Alex Martelli put it in his Python Cookbook (2nd ed., p.230): "To describe something as clever is NOT considered a compliment in the Python culture." Python's philosophy rejects the Perl "there is more than one way to do it" approach to language design in favour of advocating a single "right" approach to problem solving.[32]

Like nearly all other languages and their communities, Python does not advocate premature optimisation, and actively eschews patches to non-critical parts of CPython which would offer a marginal increase in speed at the cost of clarity.[33] Because of this, Python is sometimes labelled as 'slow',[34] and while the community accepts this, it is not commonly seen as a problem, because the majority of a program is not critical to speed, and the bottlenecks can be optimised greatly (a 15-fold optimisation of a naive algorithm is recorded without recoding into C), but premature optimisation is warned against strongly .[35]

[edit] Neologisms

A common neologism in the Python community is pythonic, which can have a wide range of meanings related to program style. To say that a piece of code is pythonic is to say that it uses Python idioms well; that it is natural or shows fluency in the language. Likewise, to say of an interface or language feature that it is pythonic is to say that it works well with Python idioms; that its use meshes well with the rest of the language.

In contrast, a mark of unpythonic code is that it attempts to "write C++ (or Lisp, or Perl) code in Python"—that is, provides a rough transcription rather than an idiomatic translation of forms from another language. The concept of pythonicity is tightly bound to Python's minimalist philosophy of readability. Unreadable code or incomprehensible idioms are unpythonic.

Users and admirers of Python—most especially those considered knowledgeable or experienced—are often referred to as Pythonists, Pythonistas, and Pythoneers.

The prefix Py- can be used to show that something is related to Python. Examples of the use of this prefix in names of Python applications or libraries include Pygame, a binding of SDL to Python (commonly used to create games); PyQt and PyGTK, which bind Qt and GTK, respectively, to Python; and PyPy, a Python implementation written in Python. The prefix is also used outside of naming software packages: the major Python conference is named PyCon.

An important goal of the Python developers is making Python fun to use. This is reflected in the origin of the name (after the television series Monty Python's Flying Circus), in the common practice of using Monty Python references in example code, and in an occasionally playful approach to tutorials and reference materials.[36] For example, the metasyntactic variables often used in Python literature are spam and eggs, instead of the traditional foo and bar.

[edit] Influences on other languages

Python's design and philosophy have influenced several programming languages:

Python's development practices have also been emulated by other languages. The system of requiring a document describing the rationale for and issues surrounding a change to the language (ie, a PEP) is also used in Tcl directly due to Python's influence.[41]

[edit] References

  1. ^ a b HISTORY. Python source distribution. Python Foundation. Retrieved on 2007-03-21.
  2. ^ What is Python? Executive Summary. Python documentation. Python Foundation. Retrieved on 2007-03-21.
  3. ^ a b c The Making of Python. Artima Developer. Retrieved on 2007-03-22.
  4. ^ a b Why was Python created in the first place?. Python FAQ. Retrieved on 2007-03-22.
  5. ^ Guido van Rossum. The fate of reduce() in Python 3000. Artima Developer. Retrieved on 2007-03-22.
  6. ^ Guido van Rossum. Computer Programming for Everybody. Retrieved on 2007-03-22.
  7. ^ Computer Programming for Everybody. Python Software Foundation. Retrieved on 2007-03-22.
  8. ^ a b A.M. Kuchling and Moshe Zadka. What's New in Python 2.0. Retrieved on 2007-03-22.
  9. ^ a b History of the software. Python Library Reference. Retrieved on 2007-03-22.
  10. ^ Jeremy Hylton. Statically Nested Scopes. Retrieved on 2007-03-22.
  11. ^ http://www.python.org/doc/2.2.3/whatsnew/sect-rellinks.html
  12. ^ http://www.python.org/doc/2.2.3/whatsnew/node5.html
  13. ^ http://www.python.org/dev/peps/pep-0282/
  14. ^ http://www.python.org/doc/2.3/whatsnew/node9.html
  15. ^ http://www.python.org/dev/peps/pep-0318/
  16. ^ http://www.python.org/doc/2.4/whatsnew/node6.html
  17. ^ http://www.python.org/dev/peps
  18. ^ http://www.python.org/doc/essays/pepparade.html
  19. ^ http://www.python.org/peps/pep-3000.html
  20. ^ http://python.org/Quotes.html
  21. ^ http://www.python.org/about/success/usa/
  22. ^ Is Python a good language for beginning programmers?. General Python FAQ. Python Foundation (7 March 2005). Retrieved on 2007-03-21.
  23. ^ van Rossum, Guido (9 February 2006). Language Design Is Not Just Solving Puzzles. Artima forums. Artima. Retrieved on 2207-03-21.
  24. ^ van Rossum, Guido (21 April 2006). Coroutines via Enhanced Generators. Python Enhancement Proposals. Python Foundation. Retrieved on 2007-03-21.
  25. ^ Why must 'self' be used explicitly in method definitions and calls?. Python FAQ. Python Foundation.
  26. ^ http://www.python.org/dev/peps/pep-0007/
  27. ^ http://www.oreilly.com/pub/a/oreilly/frank/rossum_1099.html
  28. ^ http://codespeak.net/pypy/dist/pypy/doc/faq.html#pypy-translation-tool-chain
  29. ^ http://psyco.sourceforge.net/introduction.html
  30. ^ http://www.oracle.com/technology/pub/articles/piotrowski-pythoncore.html
  31. ^ http://www.python.org/peps/pep-0327.html
  32. ^ http://www.python.org/dev/peps/pep-0020/
  33. ^ http://www.python.org/dev/culture/
  34. ^ http://peter.mapledesign.co.uk/weblog/archives/python-is-slow
  35. ^ http://www.python.org/doc/essays/list2str.html
  36. ^ http://docs.python.org/tut/node3.html
  37. ^ http://boo.codehaus.org/Gotchas+for+Python+Users
  38. ^ http://developer.mozilla.org/es4/proposals/iterators_and_generators.html
  39. ^ http://www.linuxdevcenter.com/pub/a/linux/2001/11/29/ruby.html
  40. ^ http://groovy.codehaus.org/
  41. ^ http://www.tcl.tk/cgi-bin/tct/tip/3.html

[edit] See also

[edit] Additional Reading

[edit] External links

Wikibooks
Wikibooks Programming has more about this subject: